中考数学复习指导 勾股定理解法指导-中考复习

2021-05-05 02:03发布

中考帮小编今天为您推荐这篇关于中考复习的文章,帮助大家在中考复习的过程中提升成绩,加油中考。欢迎大家在中考问答中提出各类疑问。中考加油,我们一路同行。

 
       勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2
  勾股定理逆定理 如果三角形三边长a,b,c有下面关系:a2+b2=c2
 
  那么这个三角形是直角三角形.
  早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.
  关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.
 
  证法如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.
  过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,
  所以△ACE≌△AGB(SAS).而
 

  所以 SAEML=b2. ①
  同理可证 SBLMD=a2. ②
  ①+②得SABDE=SAEML+SBLMD=b2+a2
  即 c2=a2+b2
 
  证法如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知△ADG≌△GEH≌△HFB≌△ABC,
  所以AG=GH=HB=AB=c,

 
证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:

 
△AFE≌△EHD≌△BKD≌△ACB.
  设五边形ACKDE的面积为S,一方面S=SABDE+2SABC, ①
    另一方面
  S=SACGF+SHGKD+2SABC. ②由①,②
  
所以 c2=a2+b2
   关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.
  利用勾股定理,在一般三角形中,可以得到一个更一般的结论.
  定理 在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.

 
 
   (1)设角C为锐角,如图2-19所示.作AD⊥BC于D, 则CD就是AC在BC上的射影.在直角三角形ABD中,
  AB2=AD2+BD2, ①
  在直角三角形ACD中,
  AD2=AC2-CD2, ②又
  BD2=(BC-CD)2, ③②,③代入①得
  AB2=(AC2-CD2)+(BC-CD)2
   =AC2-CD2+BC2+CD2-2BC?CD
   =AC2+BC2-2BC?CD,即
  c2=a2+b2-2a?CD. ④
  (2)设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC在BC(延长线)上的射影.在直角三角形ABD中,

  AB2=AD2+BD2, ⑤
  在直角三角形ACD中,

 
 
  AD2=AC2-CD2, ⑥又
  BD2=(BC+CD)2, ⑦将⑥,⑦代入⑤得
  AB2=(AC2-CD2)+(BC+CD)2
   =AC2-CD2+BC2+CD2+2BC?CD
   =AC2+BC2+2BC?CD,即
  c2=a2+b2+2a?cd. ⑧综合④,⑧就是我们所需要的结论
  
 特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:
  因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).
  由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,
  (1)若c2=a2+b2,则∠C=90°;
  (2)若c2<a2+b2,则∠C<90°;
  (3)若c2>a2+b2,则∠C>90°.
  勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用
  例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2


 
  分析 注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.
   因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以Rt△AFE≌Rt△ABE(AAS),
  所以 AF=AB. ①
  在Rt△AGF中,因为∠FAG=45°,所AG=FG,
  AF2=AG2+FG2=2FG2. ②
  由①,②得AB2=2FG2
  说明 事实上,在审题中,条件“AE平分∠BAC”及“EF⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡”到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.
 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).

 
   过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中,
  AB2=AM2+BM2+2BM?MD. ①
  在△ACM中,
  AC2=AM2+MC2-2MC?MD. ②
  ①+②,并注意到MB=MC,所以
  AB2+AC2=2(AM2+BM2). ③
  如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为ma,mb,mc,由上述结论不难推出关于三角形三条中线长的公式.
  推论 △ABC的中线长公式:
   
  
   
  说明 三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的ma,mb,mc分别表示a,b,c边上的中线长.



c2=a2+b2
最新中考作文技巧、中考政策信息、中考时间安排、中考分数线等信息
 
  你想要的中考资讯、你想问的中考问题
 
  尽在"中考帮问答网"
 

   欢迎各位家长和学生使用手机、平板等移动设备注册访问中考帮,中考路上我们一起同行!

   欢迎各位老师注册中考帮,与家长和学生进行互动交流!

   为更好帮助各位学生、家长和老师,中考帮文章可能来源于网络,如有侵权联系管理员进行删除!