如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.(1)如图2,若EF与AD的延长线交于点...

2天前发布

这道初中数学的题目是:
如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.

(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立;
(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点.则EA=EF是否成立?若成立,请说明理由.
(3)由题干和(1)(2)你可以得出什么结论.
1条回答
暮成雪
1楼-- · 2天前
这道初中数学题的正确答案为:
(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,ADBC,
∵AB=BE,
∴∠AEB=∠FAE=45°,
∵∠AEF=90°,
∴∠FEC=180°-90°-45°=45°=∠AFE,
∴∠FAE=∠AFE,
∴EA=EF;

(2)EA=EF仍成立,
理由是:∵四边形ABCD是平行四边形,
∴ADBC,
∴∠B+∠BAD=180°,
∵BA=BE,
∴∠AEB=∠BAE=∠FAE,
∵∠AEF=∠ABE,∠AEB+∠AEF+∠FEC=180°,
∴∠FEC=∠AFE,
∴EA=EF;

(3)在任意四边形ABCD中,只要满足AB<BC,ADBC,在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点,一定可得EA=EF.
解题思路 该题暂无解题思路

相关问题