如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以...

2022-06-24 07:36发布

这道初中数学的题目是:
如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.
1条回答
相信自己
1楼-- · 2022-06-24 07:52
这道初中数学题的正确答案为:
(1)∵S△PBQ=
1
2
PB•BQ,PB=AB-AP=18-2x,BQ=x,
∴y=
1
2
(18-2x)x,
即y=-x2+9x(0<x≤4);

(2)由(1)知:y=-x2+9x,
∴y=-(x-
9
2
2+
81
4

∵当0<x≤
9
2
时,y随x的增大而增大,
而0<x≤4,
∴当x=4时,y最大值=20,
即△PBQ的最大面积是20cm2
解题思路 12

相关问题